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1.Introduction

The inquisitive human mind has been seeking ways to predict
the future since the dawn of the human civilization. This led to the
development of Geometry, Astronomy and Mathematics in the early
days through which our ancestors learned to study the stars and the
solar system. This knowledge again helped the early mankind to
forecast weather pattern which in turn helped crop harvest.

In modern science regression is a tool widely used for future
prediction. Since prediction is an “educated guess”, one should look
into the precision associated with this prediction. In a typical multi-
ple linear regression model we collect the data on a dependent
(response) variable and several associated independent (predictor)
variables. We assume that the predictor variables occur randomly
over some population of values and the success of a predictor can be
judged by its average performance over such a population. A predic-
tor is evaluated by its mean squared error, called prediction mean
squared error (PMSE). It has been observed (see Copas(1983)) that
the PMSE of a predictor can be lowered by using a better estimator
of the regression coefficients. Hence, in this paper we focus our
attention to efficient estimation of regression coefficients under a
quadratic loss function.

It is well known that the ordinary least squares (OLS) estimator
of the regression coefficients can be dominated by she Stein-rule
estimators which are again dominated by their “positive-part” ver-
sions. To predict the future with further precision our present article
shows that the Stein-rule estimators can be dominated by a new
type of estimators which are quite different from the “positive-part”
estimators. We have also argued why our estimators are more rea-
sonable than the positive part Stein rule estimators.

It is heartening to see that many researchers have applied
shrinkage estimation in real life future prediction problems. For
example, Fay and Herriot (1973) used shrinkge estimators for small
area income estimation in the United States. Hebel, Faivre, Goffinet
and Wallach (1993) used shrinkage estimation techniques for predict-
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ing winter wheat yield in France. Landsman and Damodaran (1989)
used such a method for predicting stock market income. Also, for
another applications see Copas (1983).

2.Brief review

Let us consider the linear regression model
Y=Xg+e (1.1
where Y is a nx1 vector of observations on the dependent variable,
X is a flxed matrix of order nXp (observations on p explanatory
variables), 8 is a p X1 parameter vector ande is the error (or dis-
turbance) vector of order nXx1. The error vector & is assumed to
follow a multivariate normal distribution with mean Q and variance
_covariance matrix o2, We further assume that z»>p and the
matrix (X’X) is of rank p. Our goal here is to estimate the regres-
sion coefficient vector 8 efficiently.
The ordianry least squares (OLS) estimator of g is given as
B=XX)X'Y (1.2)
The fitted value of Y and the observed residual vector & are
Y HY and é=1-HY where H=X(X"X)"~ 1X’ (13)
Note that ?: is 1ndependent of Y Also
E ~Nu(g, (X’ X) 1) & E~0"x ns (1.4)
An estimator E of g8 is evaluated by its expected loss, called
the risk function, given as
R(B, £)=E (B—8) (B~ 4)) (L5)
One can use a more general loss function ( g E) Q( E é) where Q
is a known p X p positive definite matrix. But through suitable scale
transformation we can reduce the problem to estimation of the
regression coefficients under (1.5).
Stein (1956), and James and Stein (1961) suggested a biased
estimator of S of the form
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FYAPS
~

Bem(1—Co= )30 (1.6)
é., E/OI(X,X)EO 'éz

and showed that fic is uniformly better that @O(i.e., é“ beats/domi-
nates @" uniformly) under (1.5) provided p >3 and 0<c¢<2¢,, i.e,

R(B°» B)<R(B® > B) Vee(0, 2co), 1.7)
where ¢ =(d—2),/ (n—p+2), d:igll’{‘/l’}‘nax with A%,..,1% being

the eigen values of (X’X)™! and A %ax=max(41,..,A%). The estimators
in (1.6) are called the Stein-rule estimators. In particular, if we take
¢=¢, then we get the famous James-Stein estimator EJS: @/C". Also,
c=¢, is the optimal value in the range 0<c¢<2C,. The exact risk
expression of @JS (= E‘/“’) is given in Judge and Bock (1976). Unfortu-
nately, the Stein-rule estimators are again inadmissible and can be
dominated by their “positive-part” versions given as (see Baranchik
(1964))

AL A

. e .
P R [ 18
Br=( C@°’(X’X)E°) ) (1.8)

where for any real value a, a*=max(0, a).

Note that the Stein-rule estimators dominate ﬁj provided the
dimension p is greater than 2 (which is needed to make sure that the
risk of ﬁ’vc exists) and tr(X’X)"! divided by the largest eigen valus of
(X’X)-lis larger than 2. In fact, if tr (X'X)™' /A %ax<2, then for no
value of ¢>0, does the Stein-rule estimators dominated the OLS
estimator. Since the degree of collinearity of the columns of the
design matrix X is related to the magnitude of the eigen values of
(X’X)"!, an ill conditioned (X’X) matrix may affect whether or not
Zic dominates E". In the rest of the paper we will assume that p>3
and d=tr(X’X)"! A %> 2.

Many researchers have suggested various types of shrinkage
estimators of B (for example, see Ullah and Ullah (1978) for double
k-class estimators and other references), but so far only the “positive
-part” estimators are known to dominate the Stein-rule estimators
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Ec uniformly. But the “positive-part” estimators also have some
drawbacks,-both theoretical as well as practical. First of all, the
“positive-part” estimators are nonanalytic and hence inadmissible.
Next note that we can write E” as
£c+: {fg,c l'f X HXSCX (I_H)X (1.9)
B if otherwise,
ie, on the set {Y’ HY<cY I-— H)Y} we estimate £ by 0. So, if
there is a small measurement error in our observations, then ;§,C+ can
lead us to a null estimate even if our X is non-null. The probability
7=P {YYHY <cY'I-H)Y} that 8 can lead us to a null value
can be substantial depending on the values of #, p and c.
In the next section we derive a new type of estimators which are
uniformly better than the Stein-rule estimators (including the famous
James-Stein estimator).

3.Improved Shrinkage Estimators of 8.

To derive improved estimators of 8, we start with the structure

. (878)y(D) .

E =(1-(d 2)£°’(X’X)£ )B° (2.1)

where y(+) is a suitable nonnegative function of T= (E‘;"’X’X pv")/
(‘ ¢ ‘) Note that y(T)=(n—p+2)~! gives the James-Stein estimator
EJS. For simplicity we will use the following ‘notations for the rest
of the paper.
Notations: Let M=(X'X). Recall that 1%,..,A% are the eigen values of
M-1. Also, A*ax and A%, are the largest and the smallest eigen val-
ues of M~ respectively. Let ;,..,A, be the eigen values of M, and
Amax=max (A1,..,4p) ; Amn=min (1,,...,4p).

There exists a suitable orthogonal matrix P such that M=P’AP
and M~'=P’A"'P where A =diag {Ai,.,4»} and A~'=diag {17,..,
A3}, ie, A1=1/4, i=12,.,p. Define W=(W,,..,W,)’=P B°. Then
W~N,(7, 0?’A™) where 7 =Pg. Also, let S=¢'&. Then T=(W'A
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W/S).
Using the above notations, the risk of E in(2.1)) is

RE"D_p () go—a- Dagh =17

=E (I W—(d— z)W,fV{,W_ 19

—E (IW—z1%,,, .S%D )
+Hd— gy | W
o Sy(D) 1
2(d 2)(W’ AW)W W—7)) 2.2)
We now simplify the last term of the expression (2.2) by using
Stein’s

(1981) normal identity. Note that for a random variable Z~
N(u,0?), E(@Z)Z—u))=0c?E(g'(Z)) for any real valued function g( )
provided (a) the expectations exist; and (b) g(Z)¢(Z) — 0 as Z
— + oo (¢(+) is the N(0,1) pdf). So,

SyY(T) v Sy (1)
E [W’AWW W—-27)) = EE [W’AW

Wi (Wz‘_ 77i) ]

Sy(T)
WAW)

—EO'AIIE[ {(

Wit ]

>

v(T)

1 2
E [(W’AW)

W, {(W’AW)} J
y(T) 9 y(T)

WAW) VW, {(W’AW)} J

o2l y(T)

2 AT S S (raw
_1} )

—_ -1 y(T) ’ -1 .,7 o
Zzla AT'E (S grag TSV {(WAW) "y (T)

2 %A1 +W;

i

Z/IT’E (S

7

it
I M II’M*» v

i AW) o D+ (D55 (WA

oT
oW,

2A,W; _2AWs
(WAW)?

W 2
SY(D) a4 oy Tyt ey W2

=oF Gwawm™ waw U TWAW)

) (2.3)
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Combining (2.2) and (2.3) we get

R(B™» f)=A:+Ax(y), (24)
where
A=E (| W=7 1?] =¢*rA™"; and

Sy(T)

— - ZSZVZ(T) 2__ -1
Il II2 Il I 2
PP D A b
= AT DY D)
_ S2 y*(T ) - P40 PR
7()1|W|i TWiez
+E (46%(d—2) (W’AW] —E (do¥d— Z)Y(T)(W'AW)]
:A21(’}’)+A22(7)+A23('}’)» (say); (2.5)
where
W |?2
A, (y)=—406(d—2)E (y'(T
() o*( )E (y'(T)a (WAW)]
W2
Anly)=40*(d—2E V(T) and
(7)=46%d—2E ( {(W,AW)} ) jan
Au(y)=0E (d- 2)272(%3 IW 122~ 2% A |
We now simplify A,;(y) further as
M) am o 0® MA=DADIWIE A
“E T T wA™ ") By
—A211(7)+A212 s (say); (2.6)
where
— et trA‘l 2.
A212“ g E( ” W ” ) 3 and
o, o? (d—2)y(T) Ilellz_ 0
Azu(’y)‘O'E [“W” 2 { G‘ZT trA } ] (27)

From (2.4)—(2.7) we have
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R(Er ’ E):Al‘{’Az(Y)

:Al+(A21(’}’)+A22(7)+A23(’)’))

=A+ {(Azn(’}’)+A212)+A22(7)+A23(7)} (2-8)
Obviously the terms A; and A,;, do not depend on y(T). We now
deal with the term A,,.(y) only. We can write

o2 Az (y)
=E (E {—~z72(d— z)u—trA—l)z | T} )
IIWII2 2T
=E (E {=573(d—2)? it Z(T)HVXI}‘*]T} —2(d—2)trA'E
I W ll 2 (W AW

o2  Sy(M) |W]*

Twr-waw & | +B (A | 1))
=E (A(y(T))] , (say) (2.9)
The expression A(y(T)) in (2.9) can be rewritten as
AT =y T d 2 (2" 1y p(g—gyra- D)

(W AW)? T
+(trA-)E EII—Y%!—Z | T) 2.10)

which is quadratic in y(T). For fixed T, the optimal value of v(T)

which minimizes A(y(T)) is
Il 2

W
’)’opt(T) ( )T 1 {B(——=—o | ~ ' T)} -

trA™ SIW l|2
= EC—=— | T)} -
~( By | D)
trA™? S _
S@—dig, Tl DF D

The following lemma gives us an upper bound of (2.11).

Lemma 2.1 Let S and T are definde as above (See the notations at
the beginning of this section). Then {E(S/¢* | T)} —ig(1+’1‘)/ 7.
Proof. Note that V=5/ o2~ X2 , and V is independent of W“’
Nu( 7 o?A™Y). Define U:(VE’A\NV/ ¢?). Then U~x%1) where A =( 7’
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Ai/dz):ﬁ’(X’X)E/dz. Let hy(+) and hy(+ | 1) denote the pdfs of V
and U respectively. If we make the transformation (V, U) —» (V, T)
where T=U/V, then the joint pdf g(v, t) of (V, T) is g(v, t)=vhU(v)
hU(vt | ). It is easy to see that

v?hy(v)hy(vt | 1)dv

i
E(V | T=t)=%
gvhv(v)hu(vt | 1)dv

where B~ f(b| A1) c© b hy(b)hy(bt | A). Notice that f(b
| A>0),//b | A=0)=hy(bt | 1>0),/hy(bt | 2 =0) is an increasing function in 4,
ie. fib | A>0) is stochastically larger than f{b | A =0). Therefore, E,
so(B)>E,_o«(B)=7n(1+t)"*. Hence (E(V | T))'<1+T)/n.

Using the above lemma in (2.11) we get

%pt(T)g(lj;T)(( dirg;n m) (2.12)

The upper bound of y,,{T) in (2.12) is free from the unknown param-
eters. Now, given any nonnegative function y(T), define a new func-

tion y*(T) as
-1

y*(@)=min (#T), EEDER ) 2.13)

Obviously y*(T)<y(T) vT>0. Also, for fixed T, the expression A

(y(T)) in (2.10) is quadratic in ¥(T) with unique minimum at y(T)=

vope(T). Using the convexity of A(y(T)) it is now trivial that
Aly*(TH < Aly(T)) (2.14)

We are now ready to state the main result of this paper.

Theorem 2.1. Assume p>2 and d>2. Any shrinkage estimator Er in

(2.1) is uniformly dominated by g *provided E {(| W || 2/W'AW)

(y(T)—y*(T)} <0 where y* is defined in (2.13).

Proof. It is enough to show that the risk difference (RD)=R(g"*,

B—R(B*, )<0 VS, 6°>0. Using (2.8) it is clear that

RD= {Azu('y*)_Azu(’,V)} + {Azz(’}’*)_Azz(’}’)} + {Azs(’}’*)_

Azs(')’)} .

From (2.9) and (2.14) it is obvious that the first term of RD (A,

=EA(B), (say)
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(v*)— A (y))<0. Also, the second term is
Dy, 1V
T (WAW)
and this is < 0 since y*(T)<y(T). Finally, RD<0 provided the third
term of RD<O0.
Corollary 2.1. For any constant ce(0, 2¢,) (where ¢=(d—2),/(n—p+
2)) define y*(T)=min {c/(d—2), (trA™ /(d—2)Ah)(1+T)/ 1)} .
Then BR=(1—(d—2) (& &)%*T)/(B*(XX)B") )B° is uniformly
better that the Stein-rule estimator ﬁvc.
Proof. Take y(T)=y(T)=c/(d—2). Define y*(T) as given in the
corollary. Observe that 5./ (T)=0 and ».*'(T)>0. Therefore, the result
holds easily.
Remark 2.1. For the James-Stein estimator EJS(E ECO) we write
EJS: E""Where yvo(T)=(n—p+2)~*. Then by definingy,*(T)=min
{(m—p+2)71, trA(d—2)A tin)'(A+T)/n} , we have Er:;‘ which is
uniformly better than EJS.
A question which arises quite naturally here is-“Is it possible to

(Aaly*)— An(y) =402(d—2)E (L

improve upon the estimator ér: further?” The answer is “yes”. A

“positive-part” version @rf{* is even better than Z;:rg . Note that the
usual “positive-part” James-Stein estimator EJS“‘ takes the null val-
ue with probability m,=P {X’HXSCOZ’(I—H)X} . On the other
hand, the estimator ;B;r?f* takes the null value with probability z% =
P{YHY<cp*Y'(I-H)Y}, where ¢*=min {1, (n—p+2trA™’
(d :2)/1%,,)‘1(1-}—%)/%} g?. As a result #% <., ie., even though
both E“* and éfﬁ are uniformly better than the popular James
-Stein estimator, the latter is less likely to estimate 8 by a null
value when X is not so (.e, E" is not so).

Remark 2.2. The above theorem is a generalization of Kubokawa et
al’s (1993) result where the simpler problem of estimating a multivar-

jate normal mean vector was considered. In the simpler case of a
multivariate normal mean estimation Kubokawa et al. (1993) reduced
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the mean estimation problem to a variance estimation problem.
Using improved variance estimation techniques Pal, Lin and Chang
(1997) extended Kubokawa et al’s (1993) results which we strongly
feel can be adopted in a regression setup. This is currently under
investigation.
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